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1 Introduction 
All experimental and theoretical work in the field of diffusion is ultimately 
concerned with the basic question of how the diffusing species gets from place to 
place through the diffusion medium. In gases, where the molecules are to a first 
approximation independently-moving particles, the well-established kinetic 
theory has led to a treatment of gaseous diffusion in which the process is des- 
cribed in terms of average velocities and mean free paths of the gaseous species. 
For liquid diffusion the treatment is more complex since the restraints imposed by 
near neighbour interactions invalidate the simple assumptions applicable to gases. 
In crystalline solids the regularity of the lattice enables the possible motions of 
the atoms or ions to be restricted to simple geometrical considerations; also the 
forces between the species are usually well represented in classical terms, so that 
the diffusion problem again becomes amenable to a precise and detailed treat- 
ment. 

Experimental studies in solid state diffusion have many varied applications. 
Thus in metals and alloys the diffusion processes are intimately related to the 
structural behaviour of the materials; in the technology of solid-state devices, the 
control of the diffusion of impurities is of crucial importance in the manufactur- 
ing process, and in ionic solids the mechanism of the diffusion is of importance in 
the control of solid state reactions such as the oxidation of metals. Each of these 
particular applications tends to have its own special problems and, as a result, 
developments often appear to take place independently in the different fields. 
Nevertheless, all such studies in solid state diffusion are covered by the same basic 
models and theories, and in addition to specific applied problems, the pursuance 
of such studies greatly enhances fundamental knowledge of the physics and 
chemistry of solids. 

It is convenient to divide diffusion studies into two groups: 
(i) Isothermal diffusion. In this the migration of the diffusing species is 
followed through a solid kept at a constant known temperature. The diffus- 
ing species may be an isotopically labelled atom or ion of the host material 
(self diffusion) e.g. K in K, K+ in KCI, or it may be a species which is 
chemically distinct from the host material (impurity or chemical diffusion) 
e.g. Ca2+ in NaCl, Au in Pb. These studies can provide direct and detailed 
information about the mechanism of the diffusion process. 
(ii) Thermal diffusion. In this the migration of a solute species is followed in 
a solid which has a thermal gradient maintained along it. If a solid which 
has a uniform concentration of impurity atoms or ions throughout is 
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maintained in a temperature gradient, then one component. of the solid will 
diffuse preferentially towards the higher temperature region, thus establish- 
ing a concentration gradient. This effect, called the Soret effect, is analogous 
to the redistribution of electrons which results in thermoelectric effects when 
a conductor is held in a temperature gradient. Although thermal diffusion 
studies also provide detailed information about the migration processes, the 
information is not so direct or so unambiguous as that obtained from iso- 
thermal methods. Much of the work in thermal diffusion is devoted to 
testing the applicabiIity of the equations of irreversible thermodynamics to 
the process, and to the formulation of acceptable molecular interpretations 
of the parameters obtained from these equations. Thermal diffusion has been 
reviewed elsewherel and in this article attention will be restricted to iso- 
thermal diffusion in ionic crystals. 

2 Theory 
A. Diffusion equations.-The quantitative treatment of diffusion is still based on 
the successful approach pioneered by Adolf Fick in 1855. Fick supposed that 
the flow or flux of diffusing species was proportional to the concentration 
gradient of that species in the diffusion medium. This is expressed as: 

J 1 = -  Dl(%) ax t 

where J1 is the flux of component 1 across a given plane and (&,/ax)t is the 
concentration gradient of that component in the direction x at time t. The constant 
of proportionality D1 is the diffusion coefficient of the process. In a steady state 
when (ac,/ax)t = 0, equation (1) may be used directly, but more often the 
concentration gradient changes with time, in which case equation (1) is in an 
inconvenient form. Jn the case of variable concentration gradient, it is readily 
shown that: 

" = D 1 ( E 5 )  at 

This is often called Fick's Second Law, and is the equation most frequently used 
for following isothermal diffusion processes. Equation (2) enables the concentra- 
tion of the diffusing species at various positions (x) and times (t), to be related 
to the diffusion coefficient of the process. However, the solution of equation (2) is 
strongly dependent on the boundary conditions imposed, and therefore on the 
physical form of the diffusion system. Detailed treatments of these solutions are 
given e1~ewhex-e~~~ and only a brief description will be given here of commonly 
used conditions. 
(i) Diflusion into a semi-iizfinite solid. If a bar of solid B has a thin film of solid A 

A. R. AIlnat and A. V. Chadwick, Chem. Rev., 1967, 67, 681. 
W. Jost, 'Diffusion in Solids, Liquids, and Gases', Academic Press, 1952. 
J. Crank, 'Mathematics of diffusion', Oxford University Press, 1956. 
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deposited on one end face and the couple annealed at a known temperature T 
for a given time t ,  then the concentration profile of A along the direction x into 
the solid B is: 

(&) co C = -exp - 
( rDt )+  (3) 

where Co = the initial concentration of A on the surface ( x  = 0). This solution 
to equation (2) satisfies the boundary conditions for this particular example viz 
that : 

(9 

(ii) 

(iii) 

when x = 0 and t = 0, C = co i.e. the entire amount of A is concentrated 
on the plane x = 0. 
for t -+ 0 and C -+ 0 then x > 0, i.e. diffusion takes place in the positive 
direction of x. 
the total amount of A present is constant, however it is distributed, since 

00 

Cdx = C, 
I - m  

From equation (3) the diffusion coefficient D may be obtained from the slope 
of the line obtained by plotting h(C) against x2. Essentially the same solution 
applies to diffusion from a thin film into a pair of semi-infinite solids as would be 
the case if the sample A were sandwiched between two bars of B. 
(ii) Difuusion of one semi-infinite solid into another. Another common situation 
occurs when a bar of solid A is in contact with a bar of solid B, the dimensions of 
both being S (Dt)*. The boundary conditions for this situation are: 

( i )  C = C, when t = 0 and x < 0 
(ii) C = 0 when x > 0 and t = 0 

The solution to equation (2) for these conditions is 

Values of the Gaussian Error Function 

erf [ -1 X 

2( Dt)+ 

are available in standard tables, so that D can be computed from measurements 
of C(%,t) for various values of x.  

B. Description of basic diffusion mechanisms.-The diffusion coefficients intro- 
duced in the previous section give no clue as to the mechanisms whereby an ion 
migrates from place to place in the crystal lattice. These mechanisms are best 
understood in terms of the lattice defects which are present in every ionic crystal 
above absolute zero. The basic types of lattice defect found in ionic systems 
are : 

( i )  Schottky Defects-equivalent numbers of anion and cation vacancies. 
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(ii) Frenkel Defects-equal numbers of interstitials and corresponding 
vacancies in either the anion or cation lattice, 

Based on these, the following mechanisms for diffusion can be distinguished 
(Figure I): 
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Figure 1 Basic diflusion mechanisms. (a) interstitial, (b) collinear interstitialcy, (b’) non-collinear 
interstitialcy, (c) vacancy, (a) vacancy pair mechanisms. (The three situations shown at dl d, d, 
illustrate the different orientations of the vacancy pair after successive cation and anion jumps.) 
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(i) The Interstitial mechanism, in which an ion in an interstitial position hops to 
any one of the neighbouring interstitial sites without permanently displacing 
any other ion. 
(ii) The Interstitialcy mechanism, in which an interstitial ion displaces a 
neighbouring lattice ion (of its own kind) into the next interstitial position, and 
itself takes up the vacated lattice site. The two variations of this process, the 
collinear and non-collinear mechanisms, are illustrated in Figure 1 b. 
(iii) The Vacancy mechanism. Here, a cation in any site round a cation vacancy 
(or an anion in any site round an anion vacancy) may exchange places with the 
vacant site. 
( iv)  The Divacancy mechanism. The anion and cation vacancies have a net 
positive and negative charge respectively, and in some circumstances they may 
associate into vacancy pairs i.e. where two neighbouring sites in the crystal are 
empty. Diffusion via this defect can occur by anion and cation hopping into 
the appropriate ‘half‘ of the vacancy pair, which then has a different orienta- 
tion in the lattice. As diffusion proceeds, the vacancy pair moves through the 
crystal in an irregular series of end over end ‘flip flop’ motions. (Figure Id). 
Various other diffusion mechanisms are possible, e.g. a direct interchange 

between two ions of like sign, or a ring mechanism involving the co-operative 
exchange of site between a number of like ions. These and other mechanisms are 
very unlikely in ionic crystals, and attention may be restricted to those described. 

The motion of a given ion (and its corresponding lattice defect) by any of the 
above mechanisms leads to a net displacement which is the vector sum of all the 
individual jump processes. Provided that these jumps are in random directions 
then the diffusion process can be treated as a random walk problem, and the 
macroscopic diffusion coefficient will then be a function of the jump frequency, 
the distance travelled per jump, and the total number of migrating species. A 
detailed treatment of random walk diffusion is given in several standard  text^,^,^ 
but the relationship between the macroscopic diffusion coefficient and the ionic 
parameters may be shown by the following simplified approach. 

Consider two adjacent planes of spacing A in a simple cubic lattice. Let n, and 
n, be the numbers of diffusing ions per unit area in the planes 1 and 2 respectively. 
If r,, is the jump frequency for an ion from a given site in plane 1 to the corres- 
ponding site in plane 2, then the flux of ions from plane 1 to 2 per unit area per 
unit time is j , ,  = nlr12. Similarly the flux from plane 2 to 1 is j , ,  = n2rzl  where 
r,, is the corresponding jump frequency. 

The net flux of ions between the two planes is 

If the process is truly random so that the jump frequency is independent of 
direction then 

J = (n, - n , ) r  where r = rzl = rla 
P. G. Shewmon, ‘Diffusion in Solids’, McGraw Hill, 1963. 
J. R. Manning, ‘Diffusion kinetics for atoms in crystals’, Van Nostrand, 1968. 
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The ion concentration per unit area n, and n, may be written as concentrations 
per unit volume. 

n, = )tc, and n2 = hc2 and (ti, - n2) = x(cl - c2) 

The concentration difference (c, - cz) may be expressed in terms of the concen- 
tration gradient in the x direction by 

i?C 
(c, - ce) = - h- ax 

ac so that J = - A T -  
ax 

The jump frequency in the x direction is related to the total jump frequency v by 

1 
z r = - v  

where 2, the total number of possible choices of jump open to the diffusing ion is 
equal to the number of like neighbouring sites. In the simple cubic system being 
considered here Z = 6 so that 

When this is compared with Fick's first law, equation (l), it is seen that in general 

where Z is dependent on crystal structure. 

two probabilities: 
The frequency v with which an ion jumps to an adjacent lattice site involves 

(i) that the site to which it moves is vacant (in the case of a vacancy mechanism) 
(ii) that the ion has sufficient thermal energy to surmount the surrounding 

potential barrier. 
The first of these probabilities dictates the number of ions which are free to move 
according to the appropriate mechanism, and this number can clearly be 
equated to the concentration of defects per unit volume (m). The second prob- 
ability determines the fraction of the jump attempts which are successful; this is 
governed by the usual Boltzmann factor and may be written as: 

Agm p = wexp - - 
kT (7) 

where w is the jump attempt frequency i.e. the normal lattice ion vibration in the 
direction of the contemplated jump, and Agm is a Gibbs free energy of activation 
for the motion of the ion from one potential minimum in the lattice, through a 
saddle point to the next potential minimum. The diffusion coefficient for the 
process can now be written 
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1 Agm D = -A2mwexp - - z kT 

It is possible to extend the relation further by considering 
defects m. The formation of a lattice defect is also a 

the concentration of 
thermally activated 

process, and it is readily showns that in a lattice with Schottky defects the 
equilibrium number of cation vacancies or anion vacancies is given by 

(%) nu+ =nu- = Nexp - (9) 

where nu+ and nu- are the numbers of cation and anion vacancies, N is the total 
number of sites per unit volume, and Agf is the Gibbs free energy of formation of 
the isolated Schottky pair. A similar relationship holds for Frenkel defects. 

The diffusion process usually occurs by the migration of one type of defect, 
and if the expression for the concentration of defects of the appropriate type is 
substituted in equation (8) we have: 

D=-/\Pwexp( 1 -)exp(- - &f Agm ) 
2 2kT 

If the free energy terms are resolved into the corresponding enthalpies and 
entropies this becomes 

where all the entropy and other temperature independent constants have been 
included in the pre-exponential factor. This equation shows the validity of the 
linear relationship between In D and 1/T which has long been recognised 
empirically. 

Equation (1 1) has been derived on the assumption that the number of defects 
is the equilibrium concentration. At temperatures less than about 0.6 Tm 
(Tm = melting temperature) this is often untrue, due to the inevitable presence of 
impurities with higher valence than that of the host crystal ions. In a crystal of 
NaCl, any cation impurity such as Ca2+ will cause an extra cation vacancy 
because of the electroneutrality requirements. Such impurity-controlled defects 
are present in a constant, temperature independent concentration n' >> 
n (equilibrium) and in this region the diffusion will be determined by the migra- 
tion of defects already present, with the diffusion coefficient given by 

A. B. Lidiard, 'Ionic Conductivity', Handbuch der Physik, Springer-Verlag, 1957. 20, 246. 
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As the temperature is increased, the number of defects produced thermally 
eventually outweighs those present due to impurities, and the diffusion obeys 
equation (11). A plot of In D against l /T will show a break into two regions 
described as Intrinsic (high temperature) and Extrinsic (low temperature) and in 
principle, the activation enthalpies Ah, and Ahf can thus be determined from the 
two slopes. Although ionic diffusion in some solids shows this behaviour clearly, 
the parameters relating to defect mobility and formation are more easily obtained 
from ionic conductivity 

3 Correlation Efiects 
Probably the most important single concept to evolve in the study of solid state 
diffusion since the idea of the lattice defect by Frenkel in 1926’ is that of the 
Correlation Effect. This concept was introduced by Bardeen and Herring in 1951 
and results from the realisation that ion (or atom) migration in a solid is not 
necessarily a random process, but that a given jump direction may depend on the 
direction of the previous jump. When this is so, the random walk equations are 
modified by the introduction of a Correlation Factor f, which may be defined in 
general terms as the ratio of the diffusion coefficient actually observed to that 
which would be expected on the basis of a truly random walk migration. The 
subject of correlation effects is reviewed comprehensively by Manning5 and by 
LeClaire,9 but in this section a general summary of the topic is given. Consider a 
plane in a simple ionic lattice (Figure 2a) and assume that the lattice contains a 
cation vacancy, with a tracer cation on a neighbouring cation site. The process of 
diffusion can occur by any of the numbered cations 1-4 exchanging positions 
with the vacancy. This vacancy has no preference for exchange with any one of its 
neighbours so that its first jump is entirely random. Since we follow the diffusion 
process by the movement of the tracer, assume that the first jump of the vacancy 
is by exchange with position 2 leading to the situation (Figure 2b). The next jump 
of the tracer is not a random process since it is still a next neighbour of the 
vacancy (which continues its random motion), but the cation sites 1,  3,4 are no 
longer next neighbours of the vacancy and there is a probability greater than 
random that the tracer will move back to 2 rather than jump to 1 , 3 ,  or 4. These 
latter jumps would require that the vacancy had moved round to 1,3, or 4 before 
the tracer makes its next jump to one of these sites, and this requires either 2 
separate jumps (to 1 or 3) or 3 separate jumps (to site 4) of the vacancy. It is 
therefore seen that of the choices available to the tracer (as at Figure 2b), a jump 
back to 2 is that of highest probability, jumps to 1 and 3 have equal and lower 
probability, and the jump to 4 has the lowest probability. When this non-random 
motion is considered over many consecutive jumps (n) the mean square displace- 
ment of the tracer, z(t), will be less than that of the vacancy, z(vl, which took 
the same number of jumps. This means that the observed diffusion coefficient of 

7 I. Frenkel, Z.  Physik, 1926, 35, 652. 
6 J. Bardeen and C. Herring, ‘Atom Movements’, A.S.M. Cleveland, 1951. 

treatise, ed. Eyring et al., 1970 Vol. 10. Chapter 6. 
A. D. LeClaire, ‘Correlation Effects in Diffusion in Solids’. Physical Chemistry-an advanced 
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b 

Figure 2 Correlated inotion in vacancy digmion. ( 

the tracer is less than if its motion were truly random (like the vacancy) and the 
correlation factor is given by 

In the random walk analysis, the mean square displacement expressions are given 
in terms of the individual jump vectors. If the lattice geometry is such that these 
jumps are all of the same length then 
- RE = nX2 (1 + 2(cOse, + CosO; + - - - - - cosej) I (1 3) 

where C x ,  is the average value of the cosine of the angle between one jump and 
thejth jump following. If there is no correlation between the value of 8 for any 
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jump and the previous jump then all possible values of 8 are equally allowed, and 
the summation of C a  terms in equation (13) averages out to zero, giving 
R! = nh2. 

When the jumps are correlated the terms no longer average to zero andf 
is given simply by the series within the braces in equation (13). 

When all the jumps are of the same type, Compaan and Havenlo have shown for 
- .  

a vacancy mechanism that : cost+ = (case,)' 
so that 

f = (1 + 2 cosel + 2 cOse12 + 2 cose,3 + - - - - - 2 coselq (14) 

which gives by summation of the series, 

1 + Cos8, f =  -. 
1 - cose, 

Since Cos8, is always negative,fis always less than unity. 
In interstitialcy diffusion (Figure 1 b) the initial jump of the interstitial ion is a 

random one, but in the second jump there is a probability greater than random 
that the displaced ion will jump back to its original site. The third jump again by 
the original interstitial ion is once more a random one. Jumps for this type of 
diffusion are thus correlated in pairs and CosO, becomes zero for half the number 
of consecutive pairs giving 

Here 8, is the average angle between the jump vectors for an interstitial to lattice 
jump and the succeeding lattice to interstitial jump. In the interstitial process, 
each jump is a random process with no correlation and so f = 1. The exact 
calculation offfrom equation (15) or equation (16) requires evaluation of all the 
possible jump sequences of the defect from the time it causes a given ion (the 
tracer) to make a jump until it causes the same ion to make a second jump, The 
several mathematical procedures which have been adopted for the solution of this 
problem are summarised by Manning5 and by LeClaireg and Table 1 gives the 
values which have been obtained for different mechanisms in different crystal 
structures. 

Table 1 Correlation factors for self diffusion 
Mechanism 

Vacancy (simple cubic lattice) 
Vacancy (body centred cubic) 
Vacancy (face centred cubic) 
Collinear Interst it ialcy (face centred cubic) 
Non-collinear Interstitialcy (face centred cubic) 

Correlation 
Factor f 
0.653 1 
0.7272 
0-7815 
0.6667 
0.9697 

lo  K. Compaan and Y .  Haven, Trans. Faraday Soc., 1956.52, 786. 
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Howardll has computed the correlation factors for diffusion via vacancy pairs ; 
there is no single unique value for this quantity since it depends on the ratio of the 
jump frequencies of the anion and cation into the vacancy pair. Values for some 
other crystal structures such as tetragonal have been calculated by Mulled2 but 
the majority of experimental work has been concerned with systems of higher 
symmetry which are quoted in Table 1. 

So far the discussion of correlation effects has been concerned with self 
diffusion where all the cation jumps (or anion jumps) have effectively the same 
frequency, assuming that the small mass difference between the tracer and the 
host is unimportant (see Section 4B). Many instances occur where it is appropri- 
ate to consider the diffusion of an impurity in a host crystal, e.g. Sr2+ in KBr. 
In the diffusion of an impurity cation by a vacancy mechanism, the probability 
of exchange with the vacancy more than once, resulting in a correlation effect, 
now depends on the relative jump frequencies of the impurity and host cations. 
Clearly if the neighbouring host cations exchange with the vacancy many times 
more rapidly than does the impurity cation, then the diffusion of the impurity 
will be as in the random walk analysis and f = 1. If we consider only the first 
vacancy-impurity exchange then the probability that the impurity will exchange 
again on the next vacancy jump is w2/(w2 + Cwl), where w2 and w1 are the 
impurity and host jump frequencies. Substituting this probability for Cosd, in 
equation (1 5 )  gives 

W1 f- - 
w2 + w1 

A more detailed treatment of the possible solvent jumps gives 

where B includes the host jump frequency w1 and also geometrical and other 
relevant factors about the surroundings of the vacancy. 

The substitution of impurity cations such as Ca2+ in a lattice such as NaCl 
produces equivalent numbers of cation vacancies in addition to those present 
in thermal equilibrium. The impurity cation here has an effective excess positive 
charge while the vacancy has an effective negative charge. The two ‘defects’ have a 
Coulombic attraction for one another and will tend to occupy adjacent sites, an 
arrangement known as an impurity-vacancy complex (or pair). If the pair is 
strongly bound then any solvent-vacancy jumps will tend to be restricted to those 
which allow the vacancy in its new position to remain as a near neighbour to the 
impurity. If the binding is not strong then dissociative jumps will be more frequent 
in which the vacancy wanders away (perhaps only temporarily) from the 
impurity. When this happens the possibility of the impurity cation moving by 
exchange with the vacancy has disappeared, and it cannot make another jump 

11 R. E. Howard, Phys. Rev., 1966,144,650. 
l a J .  G. Mullen, Phys. Rev., 1961, 124, 1723. 
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until the vacancy (or another vacancy) arrives back as its near neighbour. To 
consider such a dissociative process in the correlation factor requires extension of 
the possible jump sequences to co-ordination shells beyond the nearest and next 
nearest neighbours. These are factors which contribute to the quantity B in 
equation (18). Thus for impurity diffusion in a f.c.c. lattice, allowing for dis- 
sociative jumps, LeClaire and Lidiard13 have shown that 

7 
2 

w1 + - w3 

7 
w2 + w1 -4- - w3 

2 

f =  

where w3 is the frequency of the dissociative jump. Expressions of this general 
form are also obtained for impurity-vacancy diffusion in other crystal structures 
and also for interstitialcy impurity diffusion. 

4 Determination of Diffusion Mechanism 
The previous section has indicated the general approach to the calculation of 
correlation factors. The values so obtained are determined only by the crystal 
structure and by the mechanism of the diffusion process. Consequently it is seen 
that when the crystal structure is known, the detailed mechanism of the diffusion 
can be established by comparing an experimentally determined correlation factor 
with the theoretically possible values for that particular crystal structure. There 
are two methods for obtaining an experimental value for the correlation factor. 
These are: 

(i) by comparing the diffusion coefficient obtained directly with that calculated 
from the ionic conductivity (The Conductivity Method). 
(ii) by measuring the diffusion coefficients for two different isotopes of the 
diffusing species (The Isotope Method). 

These two methods are now discussed separately. 

A. The Conductivity Method.-The lattice defects discussed in Section 2B can 
migrate in the presence of an applied electric field giving rise to an ionic conduc- 
tivity given by 

(T = nep (20) 
where n is the number of mobile defects per unit volume, e is the effective charge 
per defect, and p is the mobility of the defect. 

The motion of a defect under an applied e.m.f. involves the same activation 
processes as were discussed in Section 2B and it is readily showns that the 
variation of conductivity with temperature is given by 

oT = oo exp - ( Ahm 

13 A. D. LeClaire and A. B. Lidiard, Phil. 
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where u,, contains entropy factors and other constants similar to those included 
in Do. 

A plot of In (aT) against l/Tshows the same features as that of In D vs. 1/T, 
and provides a convenient and frequently used method for evaluation of the 
enthalpies of defect formation and mobility. The processes of diffusion and 
conduction are therefore closely related, and from equations (11) and (21) it 
follows that when the two processes occur by the same mechanism, then for an 
ionic species i, 

(TZ Ne2 
&=kT 

This is a particular form of the general Nernst-Einstein equation relating the 
diffusion coefficient of a charged species to its mobility. 

The diffusion coefficient DZ will include a correlation factor dependent on the 
diffusion mechanism as discussed previously, but the motion of the defect 
giving rise to oz will not, since the defect moves in a random manner. The value 
of the diffusion coefficient for a random process can thus be calculated from the 
conductance and is 

so that 

f=- DT 
DU 

where DT is the directly observed diffusion coefficient of the tracer. Equation (24) 
holds for mechanisms where the jump process moves an ion and a charge by an 
equal distance, e.g. vacancy and interstitial mechanisms (Figure la, c). In the 
interstitialcy mechanism (Fig. lb), however, when the tracer ion moves a 
distance h, the charge associated with it moves a distance 2h, so that 

In general then the ratio DT/D,  may contain geometrical displacement effects as 
well as the true correlation effect discussed in Section 3, but for relatively simple 
diffusion mechanisms where only one type of defect is mobile, the geometrical 
effects are easily recognised and DT/D,  provides a convenient measure of the 
experimental correlation factor. 

One of the most successful applications of the conductivity method has been 
to AgCl and AgBr.14 In these salts, conduction is almost entirely cationic, and 
experiments on doped crystals16 indicate that they exhibit Frenkel disorder with 

1 4  R. J. Friauf, Phys. Rev., 1957, 105, 843. 
16 I. Ebert and J. Teltow, Ann. Phys., 1955, 15, 268. 
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both interstitial cations and cation vacancies being mobile. Four distinct mechan- 
isms for the Ag+ migration are therefore possible. 

(i) Ag+ interstitial migration cf = 1-00) 
(i i)  Ag+ collinear interstitialcy cf = 0.333) 
(iii) Ag+ non-collinear interstitialcy (f = 0.727) 
( i v )  Ag+ vacancy migration (f = 0.781) 
For AgBr Friaufl* has made precise conduction and cation diffusion measure- 

ments as a function of temperature. His results show that fvaries from 0.46 at 
low temperature to 0.65 at higher temperatures. This indicates that the vacancy or 
interstitial mechanisms cannot be operative, and shows further that both types 
of interstitialcy mechanisms occur, the collinear mechanism predominating at 
lower temperatures. By combining these results with Teltow’s conduction data on 
doped crystals, Friauf has determined the activation energies for both types of 
interstitialcy motion, and also the contributions from each to the total diffusion. 
The situation in AgCl has been shown to be analogous in a similar analysis by 
Compton and Maurer.ls This work on silver halides shows strikingly how much 
information can be obtained about the detailed mechanism of ion diffusion by the 
conductivity method. However, few cases are as straightforward as the silver 
salts, and this is true of the alkali halides which as a group have been extensively 
studied. It is frequently found that deviations from the Einstein equation occur 
when DT/D,  is substantially greater or less than the values off for particular 
mechanisms, and these deviations often provide much information about the 
diffusion process. Thus any association of defects into neutral entities such as 
vacancy pairs or impurity ion - host ion vacancy complexes will cause DT to be 
greater than fD,. This is because the neutral complex cannot contribute to 
electrical conductivity but will contribute to diffusion. The existence of appreciable 
contributions from impurity cation -host cation vacancy complexes is shown 
by measuring impurity cation diffusion coefficients in the crystal. For this type of 
complex, the value of D for the impurity cation will be the same as for the host 
cation since the two ‘parts’ of the complex diffuse together. Similar conclusions 
apply to anion impurity complexes although these have been less extensively 
studied than cations. Contributions from anion - cation vacancy pairs are 
recognised when the anion and cation diffusion coefficients are comparable and 
have similar activation energies. Further, the anion (and cation) diffusion coeffi- 
cients will not be changed by doping the crystal with aliovalent impurities; this is 
because addition of aliovalent cations increases the number of free cation 
vacancies, decreases the number of free anion vacancies [see equation (9)] but 
does not alter the number of vacancy pairs.17 

The earlier work on the alkali halides suggested that cation diffusion occurred 
predominately by a simple vacancy mechanism but more recent work has shown 
that vacancy pairs contribute appreciably. In particular, Friaufls has concluded 
from diffusion studies in the presence of an electric field that approximately 50 % 
16 W. D. Compton and R. J. Maurer, J. Phys. and Chem. Solids, 1956, 1, 191. 
l7 A. B. Lidiard, J .  Phys. and Chem. Solids, 1958,6, 298. 
18 V. C. Nelson and R. J. Friauf, J .  Phys. and Chem. Solids, 1970, 31, 825. 
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of the cation diffusion in NaCl near the melting point is due to vacancy pairs. 
However, the question of vacancy pair diffusion in alkali halides is still in- 
completely resolved, and differences of opinion exist as to the concentration and 
contribution of these complexes. 

B. The Isotope Method.-The isotope effect depends on the fact that two differ- 
ent isotopes of the same species will have slightly different diffusion rates and 
correlation factors, because of the difference in mass (and therefore a difference in 
jump frequency). In the case of self diffusion, equation (17) may be applied since 
the tracer ions may be treated as a special type of impurity. The ratio of the 
diffusion coefficients for two isotopes a and /? may be written as 

where w and f are the jump frequency and correlation factor, and by utilising 
equation (17) it may be shown that 

( 1  - 2 )  / ( 1  -$)=fa 

This holds when there is only one type of jump for each tracer, but when more 
than one type of jump is possible (as for example in interstitialcy motion) then 
equation (27) is modified with geometrical factors. Since the two diffusing tracers 
are chemically identical, the ratio of their jump frequencies w,/ws may be written 
as ( n ~ ~ / r n ~ ) ~  where m is the mass. The general application of the isotope method 
consists of comparing the experimentally determined left hand side of equation 
(27) with the possible values of the right hand side. 

For true impurity diffusion, f has no single discrete value, but depends on the 
ratio of solvent : impurity jump frequencies. The right hand side of equation (27) 
can thus have a series of values even for a given mechanism and consequently 
the isotope method does not give such direct information about impurity 
diffusion as it does for self diffusion. However, if the mechanism for impurity 
diffusion is known from other measurements, then the isotope method gives 
important information about the relative jump frequencies of host and impurity 
ions. 

Equation (27) holds when the diffusion process involves only one ion, i.e. when 
the diffusing ion moves through the saddle point configuration without sharing 
its kinetic energy with the surrounding lattice ions. LeClairels has shown when 
this is not so, then 1 - w,/ws will be smaller than required by equation (27), with 
the result that 

l sA .  D. LeClaire, Phil. Mag., 1966, 14, 1271. 
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In this modification, Ak represents the distribution or sharing of kinetic energy 
between the diffusing species and the rest of the lattice. The left hand side of 
equation (28) is again obtained by experiment, but since A k  is not known 
uniquely, the correlation factor cannot be determined with precision. However, 
Ak must range from 0 to 1 so for a given mechaiiism it is possible to put limits on 
the magnitude of fAk which can then be compared with the left hand side of 
equation (28). In this way it is often possible to show that only one mechanism 
gives agreement with the experimental facts. 

One application of the Isotope method which may be cited here is that of 
BarrZ0 on the isotope effect for cation diffusion in NaCl. A great deal of other 
evidence has indicated that cation diffusion in NaCl is predominantly by the 
vacancy mechanism. By diffusing 22Na and 24Na simultaneously into NaCl, the 
left hand side of equation (28) has been evaluated and shown to be clearly and 
unambiguously consistent with the correlation factor required for this mechanism. 

5 summary 
This article has outlined some of the important concepts relevant to solid-state 
diffusion studies, and has indicated briefly some of their applications. Space does 
not permit any discussion of the general experimental techniques which are used 
in this field, but useful coverage of this is included in references 14 and 20. 

The discussion has indicated the wealth of detail which can be obtained about 
ionic diffusion processes. In ionic crystals particularly, complimentary studies 
such as conduction in doped crystals and dielectric relaxation measurements are 
frequently useful in backing up direct diffusion measurements to provide clear 
identification of the diffusion mechanism. When the mechanism is known, the 
isotope method of measuringfhas shown up the importance of the quantity Ak.  
This provides information about the transition state in the solid which cannot at 
present be obtained in any other way, and it is likely that future studies will be 
increasingly concerned with this quantity and its interpretation. 

*o L. W. Barr and A. D. LeClaire, Proc. Brit. Ceram. Soc., 1964, 109. 
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